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Received 1 June 1973 

Abstract. A constructive method is given for obtaining all the symmetrized nth powers 
of an induced representation. These are the representations in one-one correspondence 
with the irreducible representations of the symmetric group S, and they are obtained here 
as induced representations. This problem has only previously been solved in the case n = 2 
by Mackey, and Bradley and Davies. Our starting point is the partial decomposition of 
the nth Kronecker power of an induced representation on subspaces labelled by double 
coset representatives. An action of the symmetric group is defined on these subspaces 
causing aggregates of them to form larger subspaces which may be symmetrized separately. 
This symmetrization is achieved by inducing through an intermediate subgroup so that a 
basis for the space is obtained which explicitly contains all permutations by elements of S,. 

1. Introduction 

In this paper, constructive proofs are given which enable the nth Kronecker power of an 
induced representation to be reduced in terms of the symmetric group of degree n, so 
that, within each symmetry class, the reduction is expressed as a sum of induced represen- 
tations. The results obtained have immediate application in the theory of crystallo- 
graphic space groups since irreducible space group representations have conve,nient 
and elegant expression as induced representations. In particular, there is a direct 
application, in the case n = 3, to the Landau theory of second order phase transitions in 
crystals. A full account of this theory may be found in Lyubarskii (1960, chap 8) and 
Landau and Lifshitz (1958, chap 14). 

In order to state the problem more precisely, we begin by defining the Kronecker 
power of a representation, exhibiting the natural action of the symmetric group on the 
basis of the tensor product space and showing that this leads to a decomposition into 
symmetry classes. Let G be a group and let V be the carrier space for a finite-dimensional 
representation A of G with basis . . , $,I. Then, for all elements g E G, we have 

d 

j= 1 

Now form the vector space R spanned by the ordered n-tuples of functions (t,bil,. . . , $in), 

is = 1, . . . , d ; s = 1, . . . , n. This is a carrier space for the nth Kronecker power of A. The 
action of any element g E G on Cl is given by 

g($il 3 . . . > $in) = . .  ( $ j 1 3 .  . ' 9  $jnMg)jlil . . . A(g)jni; (1.2) 
1 1  3 . .  , . In 

t Now at Cavendish Laboratory, Cambridge, UK. 
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Also, there is an action of the symmetric group S,, on the positions of the functions in the 
n-tuple, given by 

n($il>...>$in) = ($i~-l,,)~"'~$i=-~~")), (1.3) 

for all n E S,, . Clearly the actions of G and S,, commute. It may be shown that R will 
split into a direct sum of subspaces Cl', in one-to-one correspondence with the UIR'S 
(unitary irreducible representations) of S,,, such that each Rv is invariant under both 
G and S,, . Rv has the important property that if (8, n) belongs to G x S,,, then Rv carries 
the representation ( v )  (8) @ [v ] (n)  of G x S,,, where [ v ]  is a UIR of S,, of dimension f v  and 
( v )  is some UR (unitary representation) of G of dimension d , .  The space Cl" is called the 
symmetry class corresponding to the UIR [VI of S,,. This follows from the similar result 
for the general linear group GL(d, C) of which the matrix representations of G form a 
subgroup. A proof of this general result was originally given by Schur and a clear 
exposition is to be found in Boerner (1970, chap 5). 

It is a well known result, due to Mackey (1951), that a partial decomposition of the 
Kronecker square of an induced representation (more generally the nth Kronecker 
power ofan induced representation) may be obtained through a double coset decomposi- 
tion, since such representations are equivalent to induced representations defined on 
subspaces labelled by the double coset representatives. By analysing the subspaces of 
this decomposition, we show explicitly how to effect a further decomposition into sym- 
metry classes. Also, we give a constructive method for obtaining the induced representa- 
tions carried by these symmetry classes. This generalizes work of Mackey (1953), and 
Bradley and Davies (1970) who solved the problem in the case n = 2. 

We now introduce some notation and briefly develop the background theory in 
order to describe the method used. Let G be a finite group, K a subgroup of G and D a UR 
of Kwith orthonormal basis . . . , $,I. The left coset decomposition of Grelative to K 
is given by 

where h = IG:K(.  The vector space, of dimension hd, spanned by the basis functions 
{q:$i: o = 1,.  . . , h ;  i = 1,.  . . , d }  is a carrier space for the induced representation 
D t G of G. This construction is described more fully by Bradley (1966). It can be shown 
that D t G consists of block matrices labelled by the left coset representatives so that the 
(y, 5 )  block is given by 

where by,gr is unity if gq;  E q:K and zero otherwise. Backhouse and Bradley (1970) have 
shown that this definition is identical to the one given by Mackey (1952) if K is of finite 
index in G. 

The double coset decomposition of G relative to K is 

G = U K d ; ,  K. 
j 

(1.6) 

For each d, ,  E { d i j )  define the subgroup K,(a)  = K n d,,Kd,' and let the left coset 
decomposition of K relative to K ,  be given by 

K = u q t K l .  
d 

(1.7) 
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In general we define the double coset decomposition 

G = u K , - 1 4 j K  ( r  = 1, ..., n-I) 
j 

where KO = K and 
r 

Kr = K n 0 d,,Kd; ', ( r  = 1, . . . ,  n-1) .  
i = l  

1809 

(1.8) 

(1.9) 

K, depends on the fixed set dEZ E id:,), i = 1 , .  . . , r ,  of double coset representatives 
chosen. Each set {di,) is defined with respect to the group Ki-  of equation (1.9) and 
hence we obtain the chains of double coset representatives which are used to label the 
subspaces in the partial decomposition of R. Also we have a left coset decomposition 

4- 1 = V d K r  (Y = 1,. . . , n- 1). (1.10) 
a 

Define the UR D, of K, = d,Kda- on the space spanned by the functions 

{d,4i:i  = 1, . . . ,  d} 

as follows : 

D,(d,kd, ' )  = D ( k ) ,  ( 1 . 1 1 )  

for all k E K. We are now in a position to write down explicitly the decomposition of the 
nth Kronecker power of an induced representation as a direct sum ofinduced representa- 
tions : 

(D T G) 0 (D T G) 0 . . . n times 

EE 0 [(D,,_ 1 Kn- 1 )  O . . . O ( D E 1  1 Kn-1) O (D 1 Kn- 1)1 T G, (1.12) 
( a )  

where the direct sum ranges over all chains of double coset representatives 

(a) = ( d a n - l , . . . , d s l , l )  

defined above and where the downward arrow denotes subduction. Bradley (1966) has 
proved the above theorem for finite groups. Mackey (1952) has proved this result, in the 
case n = 2, for a closed subgroup K of a locally compact group G. Hence the above 
result will still be true if we take K to be a closed subgroup of finite index in G and take D 
to be a finite-dimensional representation of G. 

This partial decomposition of the nth Kronecker power of (D 7 G )  leads to a decom- 
position of the space R into a direct sum of G-invariant spaces R,,, defined by 

(1.13) 

where, for fixed (a), the sum is over all c, o', . . . ; i,j, . . .. The summation sign means that 
we take the linear span of all the functions on the right-hand side of the equation. In Q 2 
we study the dependence of the space a(,) on the set of double coset representatives (a) 
and find conditions under which two distinct n-tuples of elements of G may be labels for 
the same space. The next step is to define an action of S,, on the spaces by permuting 
the order of the elements in the n-tuple (a). It is found that the n !  spaces obtained, which 
need not all be distinct, are all present in the direct sum decomposition of f2 and carry 
equivalent representations of the group G. The direct sum of the distinct spaces obtained, 
which we denote by T(a), is invariant under both G and S,,, and so we may restrict our 
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attention to the decomposition of T ( a )  into its symmetrized parts. The special case when 
all the double coset representatives in the n-tuple (a) are distinct is considered in fj 5 and 
the general case in fj  6 .  

2. Double coset representatives 

It was shown in the last section how a set of double coset representatives may be used to 
label the invariant subspaces of the direct sum decomposition. But, by inspection of 
equation (1.8), we see that any n-tuple (a )  = (dan- . . . , d,, , 1) of elements of C could be 
the label of a subspace for some choice of double coset representatives. In this section 
we give the condition that two ordered n-tuples 

(CO = ( d u n  I 9 . . . I  d,, 9 dao) and (8) = (do"- 1 > . . . Y dPl 9 &), 

with da, = d,, = 1, should be labels for the same subspace. However, in the construction 
we give for symmetrizing spaces, such a general prescription for choosing n-tuples is 
unsatisfactory. Later in this section, we give a procedure for obtaining the double coset 
representatives which lead to the maximum number of equal entries, and in fj 4 we show 
the essential uniqueness of such a choice. 

Considering the relations between alternative sets of double coset representatives 
leads us to the following definition : 

(a )  - (B)  if 
der = P r -  1 . . . PlPOd,,.kr- 1 (r = 1, . . . ,  n-1) (2.1) 

where pi E e, ki E K (i = 0,. . . , n - 2). The upper index a on Kq distinguishes the groups 
defined by equation (1.9) from the corresponding groups defined with respect to the n- 
tuple (B).  In order to prove that - is an equivalence relation, we need the following 
lemma. 

Lemma (2.4. 
- 1  

= pr- 1 . . . poKflp; . . . p,- 1. 

Proof. 

The proof is by induction. From equation (1.9) 

K+1 = K ndar+lKdLtl 

= e n p , .  . . p O d , r + l K d ~ , ~ I p ~ '  . . . p ; '  
- 1  

= P r .  . PO@+  PO' ' . P r  . 

The second line follows by equation (2.1) and the third from the inductive hypothesis, 
since P , E ~ .  Clearly the proof for r = 1 is identical if we take Po = K. Hence the 
result follows by induction. 

Theorem (2.2). 

The relation - is an equivalence relation. 

Proof. 

(i) (a) - (a )  if we choose pi = ki = 1. 
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(ii) If (a) - (B) ,  then we may invert equation (2.1) to  obtain 

dOr = p i  . . . pL-lldarkr--ll 
1 - 1  

= (p; p1 . . . pr--llpr-* . . . P o ) .  . . 
' .  . @O ' P ;  'P; 'P,Po)(PO ' P ;  'PolPo 1d,rk;-115 

where r = 1, . . . , n - 1. But by lemma (2.1) 

p i  . . . p,--l1pr- 2 . . . Po E p ;  . . . pr--12K- l p r -  2 . . . p o  = e- 1. 

Hence (8) - (a). 
(iii) If (a) - (p)  and (p)  - (y) we also have the relation 

dbr = S, - 1 . . . SOdy,hr - 1 ( r  = 1, . . . ,  n-1) (2.2) 
where si E e, hi E K, ( i  = 0, . . . , n - 2). Substituting equation (2.2) into equation (2.1), we 
obtain 

dar = p , -  . . . p0sr-  . . . SOdy,hr- lkr-  

= Cp,- I@,-  2 . . . pas,- 1p; . . . p,--l2)]. . . 
. * [ P ~ @ O S ~ P O  l)I(Po~o)dyjhr- 1kr- 1). 

But pi E K; and p i -  . . . p o s i p ;  . . . p,:-l1 E by lemma (2.1). Hence, (a) - (y) and - is an 
equivalence relation. 

The next step is to show that there is a one-to-one correspondence between the 
equivalence classes of n-tuples and the subspaces R(,, defined by the direct sum decom- 
position of R. 

Theorem (2.3). 

Let (a),and (B) be any two n-tuples of elements of G with d,, = d,, = 1. If (a) - (p )  then 
Qb) = R(LW 

Proof. 

Let 
G = U W : K ,  g-1= VW'J! ( r  = 1,. . . , n -  1). 

U U 

Conjugating the latter relation by @,- . . . p o ) ,  r 2 1, and using lemma (2.1), we obtain 

Since p ,  - E e- , we have 

K =  u w ; p ; ' &  
U 

andfor r  = 2, . . . ,  n-1 

n 
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From definition (1.13) 

Q ( p )  = 1 W: 9 * . $7 l(dp,_ ,4i,. . . , dO14j7 4J 
Q(,) = 1 W: . . . 4: ' P O  . . . ~;-'2(d,,_ . . I  da14j ,  4d. 

In order to reduce this expression to a simpler form, we use the fact that the carrier 
space for the UR D of K, with basis { 4 , ? . . . , $ d }  is invariant under the action of K.  Hence 
the functions { p i  . , . pn--lz+k: k = 1,. . . , d }  span the same space as the functions 
{b1,. . . , 4d}.  Also, if t 2 r,  p ,  EK: c d,,Kd;l,so 

p i 1  . . . pi-12d,r4i = p i  . . . pF-11dark4i 
= dPrkr- 1k4i7 

where k E K and the last line follows from equation (2.1). Applying the above argument, 
it can be seen that the functions { p i  . . . pn--1zda,4i : i = 1, . . . , d }  span the same space as 
the functions {d,r4i: i = 1,. . . , d } .  Hence a(,, = Q(,,. 

Thus we have the result that the decomposition of the space Q as a direct sum of 
subspaces Cl(=) is independent of the particular choice of double coset representative at 
each stage. Since we wish to symmetrize these spaces, we now give a prescription for 
choosing the double coset representatives in a manner that ensures the maximum number 
of equal entries in each indexing n-tuple (a). We prove this statement in Q 4 and show 
that our choice leads to an unambiguous and essentially unique way of labelling the 
subspaces of Q. 

Define sets Ai  as follows : 

A0 = i l l  
A ,  = {d,,:G = UKd, ,Kand  A ,  c A , ) .  

For each d,, E A , ,  define 

' , ( a , )  = {daz :G = U K l ( a l ) d a z K ,  A1 AZ(al)}. 

By A ,  c A,(a,)  we mean that distinct members of A ,  are distinct members of Az(a l ) .  
This is possible because K , ( a , )  c K. Likewise for r = 3, . . . , n -  1 we define 

A,(% 5 .  . . , U,- 1) 

= {d,,:G = U K , -  l(al,. . . , a,- , ) dSrK  with A r - l ( a l , .  . . , CI,-~) 

= A,(% 3 . .  ., a,- 1)). 

Hence we obtain sequences of sets of the form 

A n - l ( a l , .  . . , a , -z )  3 . . . 3 A, (a l )  2 A ,  3 A ,  

We call such sequences strings. To obtain a standard n-tuple, first pick a string and 
then select one element d a n - ,  from the largest set A,,-l of the string. ( A n - ,  already 
depends upon the choice of d,,, . . . , If an n-tuple (a)  = (dan- ,,. . . , d,,, 1) is 
chosen in the above way, we write (a) c A .  

In order to establish the converse of theorem (2.3) we require the following lemma. 

Lemma (2.4). 

If @) is any n-tuple, d,, = 1, then the equivalence class of (p) must contain a standard 
n-tuple (a) t A .  
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Proof: 

Suppose the contrary. Choose from the equivalence class of (p)  the n-tuple (y) that 
agrees most closely with some standard n-tuple (a) c A in the sense that d?,  = d,, 
( i  = 0,. . . , r-  1) but dyr  # dar ,  where r < n -  1 and r is maximal. But 

dyr  E C = U K- ld ,rK.  

So dy7 = pr-  ,dark, where pr -  E 

then, by (2.1) 
1 ,  k E K.  Define dAs = pr--lldYs ( s  = r +  1,.  . . , n -  1) 

(y) - @ A " -  , 3 . ' . 9 dAr+ 1 3  4 3  . . . > d,, ? 1). 

This contradicts the maximality of r and establishes the lemma. 

Theorem (2.5). 

Let (p)  and (p') be any two n-tuples with d,, = dPb = 1. If a(,, = a(,,) then (p) - (p'). 

Proof. 

By Lemma (2.4), there exist standard n-tuples (a), (a') c A such that (p)  - (a) and 
(p') - (a'). Hence, by theorem (2.3), R(B) = a,,, and R(,,). = R(,.,. If (a) # (a'), the direct 
sum decomposition of R shows that R(,) # R,,,,, which contradicts the hypothesis 
R(,) = R(,.,. So (8) - (a) = (a') - (8'). The result follows since - is an equivalence 
relation. 

3. The action of the symmetric group 

In 6 1, we wrote down a partial decomposition of the carrier space R ofthe nth Kronecker 
power of (D t C) as a direct sum of G-invariant spaces R,,,, where 

= 1 q:qt, . . . G l(da,,- ,+i,. . . T  dal+j? 6tJ 
In order to obtain all the permutations of the ordered n-tuples of functions spanning 
R,,,, it is sufficient to permute the index set (a), since the set of basis functions of the 
representation D and the set of left coset representatives of K,-  in C are common to 
each entry of the n-tuple. It is a corollary of the next theorem that then ! spaces obtained 
by permuting the entries of (a) are all present in the partial decomposition of R. 

Theorem (3.1). 

The n ! spaces 

*("n(b)a,ln - I ) 1 . . .  I a n ( b ) a n l l ) ,  1 ) (3.1) 

where TC E Sn, d,, = 1, are carrier spaces for equivalent representations of G. 

Proof. 

By equations (1.12) and (1.13), the above space carries the representation rff of G, where 

rff = [(D,,[~).,("- $3 . . ' @Da,(b)",,(,) OD) I di$)Kn- Ida,l,,,I t G 
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and Kn-' = Kn-'(a1, .  . . , an- ' ) .  Our notation means that each representation in the 
Kronecker product is subduced down to dL:,)K,,- Also D,, is a representation 
of dad,Kd, Id; ' defined by D,,(d,d,kd, ' d ;  I )  = D(k), for all k E K. Hence D,, = 

By the properties of induced representations 

r n  = {[(De,("- l J a ; ( h ) ~  . . . O(Da,(L))a;h)@DIa,(o) 1 Kn- I >  t G 
= [(Da,(,-l)O . . . ODa,(l)@Dan(0)) 1 Kn- 11 t G. 

Clearly (D, ,("- l,@ . . . OD,,,,,) and (Dan- @ . . . @DE,) are equivalent representations of 
K,,- ' .  Hence their induced representations will be equivalent. 

Corollary (3.2). 

),..., a;(&)" ,(,), 1)  = &q:, . . * G ' ( d a m ( " -  1 ) + i y  . . . I  da,(o)+j).  

This leads us to define the action of the symmetric group S,, on n-tuples (a) of 
elements of C. Let 

7c : (0, 1, . . . , n - 1) + (n(O), n( l) ,  . . . , n(n - 1)). 

dbS = ' a n ( * )  (s = 0, . . . ,  n-1). (3.2) 

Define a map f i  :GO . . . OC + GO . . . @G (n times) by %a) = (B), where 

I t  can be shown that 7c -, f i  is an anti-homomorphism. 
Define the space 

G ( a )  = 1 q: . . . q Z  ' (daK( , , -  1)4i, . . ., da , , (o )4 j ) *  (3.3) 
This is a carrier space for the representation r, of G, and so it is a suitable generalization 
of definition (1.13). Note that we must use the form of On(,) given by equation (3.1) 
when using theorem (2.3) or its converse. 

Lemma (3.3). 

If (a) - (B),  d ,  = d,, = 1, then ne(,) = Re(,) for all n ES,. 
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It can be shown that n x’ is a homomorphism. Define the stability subgroup S,,(a) 
of (a) by 

&(a) = {n E S,: x’O(.) = (3.5) 

Clearly this is a subgroup of S,, . 

Lemma (3.4). 

(i) If T’R,,, = O,B,, then S,,(fl) = d , , ( a ) T -  ’. 
(ii) Among the n ! spaces n’sZ,,, n: E S,,, there are exactly n ! / t  distinct spaces, where 

This follows from the general result about the transitive action of a group on a 
space. The spaces of lemma (3.4) (ii) are said to form an orbit under S,, which can be 
seen to be invariant under both G and S,. Now define 

t = ISn(a)l. 

E,(a) = { n ~ S , : f t ( a )  = (a)}. (3.6) 

This is a subgroup of S,,(a) and it is nontrivial only if some of the double coset repre- 
sentatives are identical. It follows from the next theorem, that E,(a) is a normal subgroup 
of &(a) so long as (a) is a standard n-tuple. 

Theorem (3.5). 

Let (a) c A,  n E S,(a). The entries in the i ,  j positions of (a) are equal if and only if the 
entries in the n(i), n( j )  positions are also equal ( i , j  = 0, . . . , n - 1 ) .  

Proof. 

Cl,,, = &(a, so by theorem (2.5) and equation (3.1) 

dnr = P r  - 1 . . . Podi=:o)da,(,,kr - 1 ( r  = 1 ,  . . . ,  n - 1 )  

where pi E K;,  ki E K ( i  = 0,. . . , n-2) .  Suppose daL = da, ( i  < j ) ,  then 

din:o$zn(,) = ( p i -  1 . . . PO)- ‘ ( P j -  1 . . . P i ) ( P i -  1 . . . Po)dL,:o,da,(,)kj- lkr-ll. 

(Pi- 1 ‘ ’ PO)- ‘bj- 1 . . . Pi)@,- 1 . . . PO) E d ~ : o ) ~ ( z ) d a n ~ o ~  c d~,:o)da,(,)KdG:,,da,(O). 

(3.7) 
By lemma (2 .1)  

Substituting in equation (3.7) we obtain tia,,,, E &(,,K. But (a) is a standard n-tuple so 

From this point we shall assume that (a) is a standard n-tuple. Theorem (3.5) gives 
E,(cr) = E,,(fi(a)) for all x E .!?,,(a) and hence &(a) is a normal subgroup of &(a). Define 
the factor group 

F,,(a) = sn(a)/En(a). (3.8) 
When &(a) is nontrivial, not all the permutations of the basis for the representation 

(Dan- ,@I . . . @I D,,@ID) 4 K,- are explicitly present in the basis for the space T(a). 
However we show that with each element n: E S,,(a) we can associate an element a, E G. 
The group M, generated by Kn- and the set (un : n E S,,(a)), will play an important role 
in the determination of the required decomposition. 

= dun(, ,  . Clearly the converse also holds. 
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Theorem (3.6). 

Let (a) c A ,  then n E &(a) if and only if there exists 

n -  1 

a, E n d ,n ( , ,~d ; l .  
s = o  

is non-empty and hence contains an element a'. Let 

Theorem (3.7). 

Let (a) c A .  With each n E &,(a) associate an element a ,  E n d,,,,Kd,;'. Let M be 
the group generated by Kn- and the set {a, : n E &(a)>, then there is an epimorphism 

:&,(a) -+ M/Kn-  given by +,(n) = a,Kn- 1 ,  with kernel En(a). 
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Proof: 

First note that if a,, a; E n:=h d,mls,Kd;l then a; E a,Kn- 1 ,  Now, for each n E &,(a), 

But andas E d,,l,,K, ( s  = 0,. . . , n -  l), and hence Kn- is a normal subgroup of M. 
Let = a,Kn- 1, &(a) = a,Kn- where n, a E S,,(a). Then 

ana, E [ n da,(,iKdisl I 1 n dlu,,,Kdi 1 1 = n damU,,)Kd,1. 
n -  1 n -  1 n- 1 

\ s = o  I \ r = o  I s = o  
so 

4i(na) = anaaKn - 1 

= a,Kn- laOK,,-, 

= 4,(n)4,(a). 
By the converse of theorem (3.6), 4, is subjective, and hence an epimorphism. 

Suppose n E Ker $ z ,  then a, E Kn- 1. So dlrk,d1;' = da,,,,k;dz;l (r = 0,.  . . , n -  l), 
where k,, k:E K. Hence d,rEda,l,,K. But (a) is a standard n-tuple so R(a) = (a) and 
n E &(a). Clearly n E En(a) implies n E Ker 4a and so &(a) is isomorphic to M/Kn-  1. 

4. Properties of standard n-tuples 

We now prove a few technical lemmas about the properties of the standard n-tuples 
introduced earlier, and then interpret their meaning. 

Lemma (4.1). 

Let (a) - (p),  where (a) c A and ( p )  is an arbitrary n-tuple with d,, = 1. Then, the 
entries in the I, s positions of (p )  are equal implies that the entries in the r, s positions of 
(a) are equal (I, s = 0, . . . , n - 1). 

Proof. 

Suppose dDS = d P r ,  s < r. Since (a) - (p )  
dat = P I - 1  . . . ~ o d p ~ k t - l ,  ( t  = 1,. . . , n-  l), 

where p i  E Kq, ki E K (i = 1, . . . , n - 2). Also d,, = d,, = 1. In particular 

d a p  = P r -  1 . . . P0dprkr- 1 

- - p,- . . . psd,,ks-_'l k r -  . 
But p r -  . . . p, E K; c dzSKda;l, ( s  = 0,. . . , r - 1). Hence dlF E dmSK, and since (a) is a 
standard n-tuple dar = d l s .  

Corollary (4 .2) .  

Let B be an alternative set of standard n-tuples arising from the non-uniqueness of the 
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prescription for obtaining A ,  and suppose (a) - (jl) where (a) c A ,  (p)  c B.  Then, 
the entries in the r,  s positions of (a) are equal if and only if the entries in the r, s positions 
of (p )  are equal ( I ,  s = 0,. . . , n - 1). 

We say the n-tuple (a) is of type (h., . . .,A,) if (a) has A l  entries equal to d:'), . . . , I ,  
entries equal to d z ) ,  where C:= A i  = n. 

Lemma (4.3). 

Let (a) c A be of type (A1,. . . , Ar). If = R(@) where (p )  c A ,  then ( p )  is also of 
type (1.1 9 . . ' 9  A r ) .  

Proof. 

By lemma (4.1) and since (p) c A :  

Number of d ,  equal to d ,  in (p) 
2 number of entries equal to d u ~ ~ o ) d a , t s ~  

= number of entries equal to in (a). 

Re(,, = implies a(,) = 

Number of d ,  equal to dUc in (a) 

and so we may reverse the argument: 

2 number of entries equal to din1- l(o,do,- I ( t )  

= number of entries equal to dpm- I ( t )  in (/I). 

The result follows by choosing t = n(s). 

then R,,, may be 
regarded as the tensor product of r tensor subspaces, each indexed by a distinct double 
coset representative dz ) .  Lemma (4.1) shows that r is minimal if (a) c A is a standard 
n-tuple and corollary (4.2) shows that this decomposition is independent of the particular 
choice of A .  Lemma (4.3) shows that this decomposition is not affected if, within each 
orbit, we consider the n-tuples *(a), XES,,, rather than the standard n-tuples. In 
order to decompose the nth Kronecker power of ( D  t G)  into its symmetrized parts, 
the results of $0 5 and 6 should be applied to  one standard n-tuple from each orbit 
under S,,. 

Now we must interpret these results. If (a) is of type ( A l , .  . . , 

5. Distinct double coset representatives 

As apreliminary to thegeneralcase,weconsider astandardn-tuple(a) = (dun- ,, . . . , d,, , I )  
with no two entries the same, that is dui # d,,(O < i j 6 n - 1). In this case E,,(a) = {I}  
and so if IT E Sn(a), by theorem (3.7), there is an isomorphism 4, : R + a,K,,- 1, 

Let A = Dun- , @ D , , - , @  . . . @ D  be the UR of K,,- with basis set 

{(dun_ 14 i ,  . . . , d a , 4 j ,  A): U, k = 1, . . . , d } .  
Define P to be the d" x d" unitary matrix with components 

n- 1 

(5.1) 
s = o  



Symmetrized nth powers of induced representations 1819 

where n E S,(cc) and duo = 1. For convenience we shorten the left-hand side of equation 
(5.1) to Pij. Then 

an(d,, - 1 4 i m  - 1 3 . . . 9  dao4iOV'< ' = (dun(" - 1 )4jn - 1 3 . . . 2  d a , ( o ) 4 j o )  (5.2) 

where the summation' convention is being used. 
Let a, = b,l E M ,  where 1 E Kn- ', and define 

n- 1 

Q i j  = n ~ ( d i , ~ s l b n d z s ) i s j s ~  
s = o  

(5.3) 

Lemma (5.1), 

The action of a,. , . P- ' on (d&Ji is independent of the chosen coset representative of 
K,- in M .  

Now define the operator a n .  . . P(n)- ' by 

an(dm4I jp(n)- ' = az(dadIip&) (5.4) 

where n(j)  means jn(,- ')j,(,- 2 ) .  . . j n ( 0 ) ,  then from (5.2) the right-hand side of equation 
(5.4) becomes (d, n(n- I)4jn(n- 1 ) ,  . . . , dan(o)q5jn(o)). We denote this basis vector by (du41,(j). 
Hence we see that 

an(da4Ijp(n)- ' = (dm$In(j). (5 .5 )  

Also it may be proved that, for all (r E S,, 

These are important results and may be summarized by saying that the operator 
a,. . . P(n)- ' permutes the components of the basis vectors of the carrier space of A. 

Equation (5.6) leads to the definition of another action of the symmetric group, 
which we write as 8 E s, : 

c(da4lz(j) = (da4lur(j)  (5.7) 
for all T E S,. The bars distinguish this action from the natural action of S, on a tensor 
space ; namely, if (r E S,, then 

o(da4lr(j) = ( d a 4 I r u - l ( j ) .  (5 .8)  

Comparing equations (5.6) and (5.7) we see that we may identify the operator a, . . . P(n)- 
with i i ~ s , .  
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Lemma (5.2). 

Let n E &(a), then the map $, : n --i a , .  . . P(n)- ' is a monomorphism of S,,(a) into S,. 

Proof, 

Let n, T E S,,(a), then 

$ a ( n ) $ z ( ~ ) < d z 4 1  j = $z(n)(da4lr(j) 

= (da4lzr(j) 

= $ z ( n T ) ( d a 4 l j .  

Also $a(n)(dz41j = ( + $ I j ,  for all j, if and only if n = 1. Hence I), is a monomorphism. 

The following lemma will be required later and is proved using equations (5.6) and 
(5.8). 

Lemma (5.3). 

Let a, E M and a E S,,, then 

anO(da4lr(i)  = Oan(dz4lr(i)r 
for all T E S,,. 

Define to be the carrier space of the UR (Da,(,-  1) 0 . . . 0 Oar(,,)) Kn- with basis 
{ (da&) : for all i}. Consider the coset decomposition 

S,, = UriSn(a) = US,,(a)TL:'. (5.9) 
i i 

By lemma (3.4), the spaces ~ $ 2 ( ~ ~  are distinct and so we induce the representation of Kn- 
carried by Oi VD(a) up to M. The carrier space of this induced representation, which we 
denote by W(a), has basis {a,Ti(da41j: for all j ,  T~ and n E S,,(a)}. Change to the unitarily 
equivalent basis {a,Ti(da$ljP(n)-'} = { ~ ~ n - ' ( d ~ 4 1 ~ } .  For fixed n E S,,(a) and T~ E S,,, 
this is a basis for the space V Q ( z )  and so, by virtue of (5.9), W(a) has basis {a(dZ4li : for 
all i, for all a E S,,}. Hence, W(a) is invariant under both Mand S,,, and contains explicitly 
all the permutations of the basis vectors of the carrier space of A. 

The action of M on W(a) is given by : 

(5.10) 

If n = 1, then a ,  = 1 E K,,- and P(1) = A(1). This action is independent of the choice of 
OES, and so, for fixed i, we may replace the functions (da41u(i), for all (TES,,, by an 
equivalent set $& = 1,. . . , n!) which is a basis for the regular representation of S,, in 
fully reduced form. To preserve continuity, a proof that S,, and s, give rise to the same 
symmetry classes will be deferred to the end of this section. 

Let f, = dim [VI, then 

(5.11) 
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The space W(a) carries the representation r of M ,  where 

r(i) = in! o A(I) 

mff) = 0 ( f v [ V l ( j f )  o W). 
V 

(5.12) 

(5.13) 

But n ! = & f:, so the symmetrized basis of W(a) corresponding to the UR [ V I  ofS, carries 
the representation 

In particular 

(5.14) 

(5.15) 

are the representations of M corresponding to the identity representation [ n ]  and the 
alternating representation [l"] of S,,, where ( - 1)" is the parity of j f  E 3,. 

The carrier space of t G is 

T(a) = 0 R S , , ,  (5.16) 

where T~ E S, is defined by equation (5.9). The space T(a) is invariant under both G and S,, 
and so may be decomposed 

i 

W )  = 0 n)" (5.17) 
V 

where T(a)' is a subspace of R'. The UR rrVl t G is defined on the space T(a)". 

disjoint cycles, including 1-cycles, in the form 
The characters in M may be found in the following way. Express n as a product of 

n = (jl . . . jpl)(jpl + . . . jp,).. . ( j p , , _  + . . . j,,). 
Then the character of Trvl(a,) is 

where xrvl is the character of the UR [VI. 
n -  1 

m 

(5.18) 
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where y = a j p ,  pm = n and p o  = 0. Also 

x,(k) = xy,(d&, l), k E K  

where x, is the character of the UR D of K .  In particular 

x v ( 4  = f : x A m  ~ E K , , - '  (5.19) 

where xa is the character of the UR A, 
We shall now show that the actions of S,, and s, on W(a)  give rise to the same sym- 

metry classes of W(a). Here, by symmetry class, we mean the set of all functions which 
belong to a given representation, say [Y], of S,,. W(a) has basis { (dE41u( i ) :  for all i and 
Q E S,}. The projection operator onto R' is given by 

(5.20) 

since all the characters are real. Hence the space W(a)' is spanned by the functions 
c 

The second line follows because xrYl is a class function and the fourth because x, x- ' are 
conjugate and S,, s,, have the same characters, being different actions of the same group. 
Now because R is a tensor space, the actions of G and S, commute, and so operating on a 
symmetrized basis element of W(a) with an element of G, as in the construction of a 
basis for the induced representation, does not change the symmetry of the element. 

6. Decomposition into symmetry classes 

Let (a) be a standard n-tuple of type ( jVl , .  . . , ir). Without loss of generality, we may 
group together equal elements and take (a) = (d:'), . . . , cl:'), d:'), . . . , @)), where d!) = 1, 
since this liesin the orbit under S,,. As in 9 5, Y E )  has basis {(d:1)4in- 1 ,  . . . , d!)4io) : for all i} 
which is invariant under S,, x SA2 x . . . x SAr.  Hence each tensor space, indexed by a 
fixed double coset representative dg), (t  = 1,. . . , r ) ,  will split under the action of SAt and 
K,- into symmetry classes, which we denote by R P t ,  and which arise in a manner 
analogous to that described in the introduction. 

Write d:) = dut (t = 1,. . . , r).  Let a = (pi)aI 0 . . . 0 (pr )ur  be a UR of K n - ' ,  
where ( p r ) u t  is some UR of dutKdE; on the tensor space indexed by dUt , corresponding to 
the UIR [pf] of SA*, 

(6.1) (pr)at(x) = < ~ t ) ( d G  'xdut) 3 

for all x E dUtKd; '. The UR a is a subrepresentation of the UR A defined in $5 .  Let 
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{ $ i w : i  = 1,. . . , d p t } ,  for each w (w  = 1,. . . ,fJ, be a basis for the UR ( p l )  of 
K ( t  = 1,. . . , r). If k E K and IC E SA, then 

Each UR (pl) is a subrepresentation of the 2,th tensor power of D and so $ i w  is a linear 
combination of &tuples. Also, the set { $ i w  : i = 1, . . . , dPt ,  w = 1, . . . , f,,) is a basis for 
R,, and so the upper index, t ,  denotes the symmetry class to which the function belongs. 

By theorem (3.7), there is an isomorphism $a :F,(a) -, M/K,,- defined by 

$a : nE, , (a )  -, a,K,, - . 

By theorem (3.9,  I C E S , , ( ~ )  may only exchange dax with da, if ii = i j  and so we may 
choose the coset representative IC in n E , , ( a )  to be that element which maps ordered ii- 
tuples into R,-tuples (1.: = 2,) without changing the internal ordering. These elements IC 

form a group Hisomorphic to F,(a) and hence to M/K,, - . The group H will be regarded 
either as a subgroup of S,, or of S, according to context. 

Define the unitary matrix P by 

where the summation convention is being used. For convenience we shall write 

(da$l iw = (da1$i:w17 . . . 9  da,.$i;wJ. 

The following results hold by proofs similar to those given in 0 5 .  

Lemma (6.1). 

The action of a,. . . P-' on (da$liw is independent of the chosen coset representative of 
K,,-l in M .  

Lemma (6.2). 

Let IC E H ,  then the map $, : IC + a,. . . P ( I c ) -  ' is an isomorphism of H onto a group of 
operators on the space va), where P ( I c ) ~ ,  = P,( i ) j .  

What is different from 0 5 is that a, . . . P ( I c ) -  ' will not in general represent a permuta- 
tion. However, lemma (5.3) will still hold if some of the double coset representatives are 
equal, so using equation (6.2), we obtain 

a ,c (da lC l I fwP(IC) -  ' = 0(dz , , , , $ f : , , ,w1  9 * . . ,  damcr)$f;, , . )wJ 

n -  I ( * )  ) (6.5) = c ~ ~ - ' ( d ~ ~ $ ~ ; ; ~ ! ~ ~ ( ~ ) ,  . . . , dav$: rwn - I ( , )  

where ts E S,,. 
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As before, let &, be the carrier space for the UR 

(Dart , )  O . . . O Da'r(r)) 1 Kn- 1 .  , 
n products 

Induce the representation of K,,- carried by Oi up to M, where T~ is defined by 
equation (5.9), and denote the carrier space of this induced representation by W(a). It 
can be shown that W(a) is spanned by the functions 

{anTi(da$l>wP(n)-' : for allj, W, t ,  Ti, n} = { T i ( d a $ I i ( j ) w )  

where 

s,, = U Ti?rE, , (U).  
xeH,i 

Now the permutations of (dQt+bl>w by an element of &(a) are already present in yz) .  To 
obtain all the permutations ~ ( d , $ l > ~ ,  where n~ H, it is sufficient to consider the set 
(da$liu)w above. This is because, by theorem (3.5), ?r only interchanges functions $ f ; w ,  
belonging to the same tensor. space, and the indices t ,  w of such functions vary over the 
same set. Hence, W(a) contains all the permutations of the basis elements of va). 

From the definition of the symmetry class R P t ,  we see that 

where the direct sum is taken over all the representations b,] of S,t(t = 1, . . . , r ) .  Define 
R,, 0 . . . 0 RWp to be the space generated by S,, acting on R,, 0.. . O RPr ,  then 

Each R,, 0 . . . 0 RPp is invariant under S,, and so the contribution to the character 
xv(a,) in Mfrom the subspace will be zero unless a, maps it into itself. From equation (6.5) 
the condition for this is that the spaces generated by ($ fzwS:  allj,} and (~)j;;;s),(~): alljs} 
must carry the same UR (pJ  of Kfor all s(s = 1, . . . , r )  although they need not be identical 
spaces if dim [p tS]  > 1. We shall now restrict attention to spaces R,, 0 . . . 0 RPr which 
are closed under operation with a, E Mand for convenience we drop the upper index t ,  on 
the functions $;/:.:w,. 

Define the operator PIK as follows: 

(6 .8)  f v  
9 1 K  = 7 1 [vl(')?Ko' 

aeS. 

This operator transforms a vector belonging to the Kth row of [v] into one belonging to 
the Ath row and annihilates all other vectors. The projection operator onto the space 
R' is given by 

PV = 1 9 y K .  (6.9) 
K 

If $ E R,, 0 . . . 0 RPr then $ = Zv PV$ is a unique decomposition of I) into symmetrized 
parts. Using lemma (5.3) 

(6.10) 

So given an orthonormal basis { $ i } ,  the contribution to the character xv(a,) from the 
space R,, 0 . . . 0 RPv is X i  (U,Y$~, 



Using equation (6.2) we obtain (no summation convention) 

( a n p z ( d a l C / l  iw 7 T(da$l iw)  

- _ -  A E xLv](cn)([p11 o * . . o [ p r ~ ) ( c ) w n - l ( w ) ~ ( n ) i i '  

! u e E d a )  

Hence the contribution to the character from the space R,, 0 . . . 0 R,,r is obtained by 
summing over z, i, w : 

Let n = ( j ,  . . , j p , ) .  . . ( j p m _  , + . . .jr) as a product of disjoint cycles, including 1- 
cycles, where we are regarding n E Sr . Then 

1 ( b 1 I  o . . . o b r I ) ( c ) w n - l ( w )  
W 

where ( = pjp, p m  = r and p o  = 0. Also 

(6.12) 

(6.13) 

where y = a j p .  Hence 

The characters on symmetry classes of a power of a representation are given in Lyubarskii 
(1960, chap 4). 

The character of the symmetrized representation rrV1 of W(a) is 

(6.15) 

where xg(a,) is given by equation (6.14) only if a, maps R,, 0 . . . 0 R,, into itself, 
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otherwise it is zero. When IE,,(a)l = 1 ,  then [(,I = [ l ]  and we obtain equation (5.18). The 
UR rrvl t G is carried by the subspace T(a)' and R' defined in equation (5.17). 

It is possible to say in advance whether there will be a contribution to the symmetry 
class 0'. The space RP1 @ . . . 0 RPr carries the representation ijiJ 0 . . . @ [p,] of 
E,,(a) d,  = d,, . . . dPv times and hence R,, 0 . . . 0 R , , ,  which is obtained by operating 
with the coset representatives of &(a) in S,,, carries the representation 

(6.16) 

of S,, d ,  times. The left-hand side is known as the outer direct product of the representa- 
tions [pl], . . . , [p,] and more details may be found in Hamermesh (1964, chap 7). The 
right-hand side is a decomposition into representations [VI of S,,. Hence there is a 
contribution to the symmetry class R' only if gllV # 0. 

From the theory of outer direct products, it follows that the identity representation 
[n] ofS,, is contained in the decomposition only if [p,] = [A,] (t  = 1, . . . , r),and the alterna- 
ing representation [I"] is contained in the decomposition only if b,] = [lac] ( t  = 1, . . . , r) .  
In both cases the g-factor is one. Also, since there is only one value of w 

C ( 1 ~ 1 1  0 * . . @ [ ~ r I ) ( ~ ) w n - 1 ( w )  = ([PI] @ . . . @  b r I ) ( ~ ) .  

Using the Frobenius reciprocity theorem in equation (6.1 l), we have 

(6.17) 
W 

x n ( a n )  = pn( i ) i  = (-1Inx1n(aJ (6.18) 

In fact, since dim [A,] = dim [l"] = 1 ( t  = 1 , .  . . , r ) ,  by inspection of equation (6.5) 
we see that an. . . P(n)- does represent a permutation in both of the above cases. Also, 
RA, 0 . . . 0 Rap is closed under both S,, and M ,  so we may extend the analysis of tj 5 to 
this case. Suppose we have 

i 

(6.19) 

(6.20) 

This can be seen more easily if we consider the elements of R,, 0 . . . 0 Rdr which trans- 
form according to the ith row of (A1)., @ . . . @ (A,),, .  Clearly, they form a basis for 
the representation ( [ i l l  0 . . . @ [Ar]) S,,, so we may take a new set of basis functions 
{$si} which, for fixed i, form a basis for the representation @ gAv[v], defined by equation 
(6.19), in fully reduced form. If Q E S,,, 1 E K,- we have 

e$si = $ri(@ g,v[vI(a))ts 

Wsi = $sj((A1)ul  O . . *  @ ( A r ) = J ( O j i .  

Hence 

an+si  = $tjp(n)ji(@ gJ.v[vI(~))ts, 

as required, so 

(6.21) 
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From equation (6.19) we have 

([1"1 o * . . o [1"I) t Sn = @ g,v[SI, 

where [ i i ]  = [VI 
carries the representation r of M where 

[l"] is the conjugate representation to [VI. Hence R1.il 0 

m,) = 0 glv[iiI(3 O P ( 4 ,  

l-[$](%) = g,v[iil(4 0 P ( 4 .  

V 

and 

. . .  
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(6.22) 

0 R , A .  

(6.23) 

(6.24) 

Another special case which is of interest is when &(a) = &(a). In this case, M = K,- 
and so T(a) carries the representation 

where we are using the notation introduced at the beginning of this section. From 
equation (6.1 1) and since 1 E K,- maps R,, 0 . . . 0 RPr into itself 

Applying the Frobenius reciprocity theorem to (6.16) we have 

[VI 1 Sil x . * . x = 0 gpv[~lI O . . . O b r I *  
P 

Hence 

xt(4 = f"g,vxa(l), 

0 fvgpv[((Pl>a1 O . . . O (Pr)z,.) 1 Kn- 11 t G. 

and the space ?"(a)' carries the representation 

U 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

7. Conclusion 

We conclude by giving a brief summary of the method to be used to symmetrize a given 
induced representation. First, we work out a standard set of double coset representatives 
as described in $2.  Then pick an n-tuple (a) and reduce all the permutations 6(a), 
0 E S, , to standard form. If there are less than n ! distinct n-tuples resulting, the group 
S,(a) is nontrivial. By (3.5) and theorem (2.5) 

Sn(a) = {c r~S, :B(a)  N (a)}. (7.1) 
In this way we split the standard set of double coset representatives into disjoint orbits. 
The next step is to construct the group M associated with each orbit, as described in 
theorem (3.7), and use the results of &j 5 and 6 to obtain the symmetrized representations 
of M .  Hence we obtain the symmetrized representations of G as induced representations. 
The special case &(a) = &(a) and the simplifications which occur when we are only 
interested in the totally symmetric and antisymmetric representations are dealt with at 
the end of 0 6. 
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Clearly the method may be adapted to calculate the nth Kronecker power of ( D  t G). 
We take one representative (a) from each orbit and find the representation 

[ ( D a n - , @  . . .  @ ~ ) l K - , l f G .  
If the orbit has order t ,  then this representation appears t times in the decomposition 
of the nth Kronecker power. 

In a subsequent paper, we shall apply our results directly to space group repre- 
sentations, and give a step by step procedure for finding symmetrized cubes. This 
should be compared with the work of Lewis (1973) where a full group method has been 
adapted to work out the totally symmetric nth power of a space group representation. 
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